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Abstract 
Genetic algorithms gain much of their power from 
mechanisms derived from the field of population 
genetics. However, it is possible, and in some 
cases desirable, to augment the standard mechan- 
isms with additional features not available in bio- 
logical systems. In this paper, we examine the 
use of Lamarckian learning operators in the 
SAMUEL architecture. The use of the operators is 
illustrated on three tasks in multi-agent environ- 
ments. 

1   INTRODUCTION 

The goal of this work is to explore the application of 
machine learning techniques to reactive control problems 
arising in competitive, multi-agent domains. In such 
domains, traditional AI planning approaches are usually 
infeasible, because of the complexity of the multi-agent 
interactions and the inherent uncertainty about the future 
actions of other agents. On the other hand, genetic algo- 
rithms [11] appear to be a promising approach to 
developing high performance control strategies. 
SAMUEL is our platform for exploring the use of genetic 
algorithms to learn control strategies, expressed as sets of 
condition/action rules, for sequential decision problems. 

Several new features have recently been added to 
SAMUEL that improve significantly both the quality of 
the rules that are learned and the computational cost of 
learning those rules. These improvements have been 
achieved by complementing the Darwinian principles 
embodied in SAMUEL with a number of mechanisms that 
are more Lamarckian in flavor. While such mechanisms 
may not be appropriate for systems intended to accu- 
rately model biological adaptive systems, they are 
appropriate for systems like SAMUEL whose primary 
motivation is the practical demonstration of genetic 
learning in interesting domains. This report will 
emphasize the new mechanisms in SAMUEL, and illus- 
trate their utility in learning some interesting behaviors 
in multi-agent environments. 

The reactive systems we consider here may be character- 
ized by the following general scenario: The decision 
making agent interacts with a discrete-time dynamical 
system in an iterative fashion. At the beginning of each 
time step, the agent observes a representation of the 
current state and selects one of a finite set of actions, 
based on the agent's decision rules. As a result, the 
dynamical system enters a new state (perhaps based on 
the actions of other agents in the environment) and 
returns a (perhaps null) payoff. This cycle repeats 
indefinitely. The objective is to find a set of decision 
rules that maximizes the expected total payoff.1 Several 
tasks for which reactive systems are appropriate have 
been investigated in the machine learning literature, 
including pole balancing [15], gas pipeline control [3], 
and the animat problem [18]. For many interesting prob- 
lems, including those considered here, payoff is delayed 
in the sense that non-null payoff occurs only at the end of 
an episode that may span several decision steps. 

SAMUEL is a genetic learning system designed for 
sequential decision problems. The design of SAMUEL 
builds on De Jong and Smith's LS-1 approach [17] as 
well as our own previous system called RUDI [7]. Some 
of the key features of SAMUEL are: 

• A flexible and natural language for expressing rules. 

• Incremental rule-level credit assignment. 

• Competition both at the rule level and at the strategy 
level. 

• A genetic algorithm for search the space of strategies. 

• A set of heuristic rule learning operators that are 
integrated with the genetic operators. 

Initial studies on an evasive maneuvers task have demon- 
strated that 

• SAMUEL can learn general strategies for evasion that 
are effective against adversaries with a broad range of 
maneuverability characteristics, and under a variety 

1 Barto, Sutton and Watkins [1] give a good discussion of broad 
applicability of this general model. 



of initial conditions (e.g., initial speed and range) [9]. 

• SAMUEL can learn high-performance strategies even 
with with noisy sensors [13]. 

• SAMUEL can effectively use existing knowledge to 
speed up learning [16]. 

Rather than detail a particular application, this report 
will try to illustrate how SAMUEL can be applied to learn 
several different behaviors, with a focus on tasks for an 
autonomous agent in a hostile environment. New results 
with three such environments are presented. We believe 
that these illustrations convey something of the general- 
ity of the approach. 
The remainder of the paper is organized as follows: Sec- 
tion 2 offers a brief overview of the SAMUEL architec- 
ture. The next section presents the newest enhancements 
to SAMUEL, including a more strongly biased conflict 
resolution algorithm, an extension of the rule language to 
include symbolic attributes organized into a generaliza- 
tion hierarchy, and heuristic rule learning operators, 
including SPECIALIZE, GENERALIZE, MERGE, and DELETE. 
Section 4 presents a test suite of environments that each 
requires the system to learn a different kind of behavior. 
This is followed by some empirical studies of SAMUEL's 
performance on these environments. The last section 
contains a few final comments. 

2   OVERVIEW OF SAMUEL 

SAMUEL adopts a number of assumptions that make the 
system potentially applicable to real-world problems. 
First, the learning agent's perception facilities are limited 
to a fixed set of discrete, possibly noisy, sensors. There 
is also a fixed set of control variables that may be set by 
the decision making agent. Reflecting our primary 
interest in rapidly changing and uncertain environments, 
the agent's decision rules are limited to simple 
condition/action rules of the form 

if 
then 

(and  Cj 
(and  a, 

where each condition c{ specifies a set of values for one 
of the sensors and each action a-s specifies a setting for 
one of the control variables. We call a set of such deci- 
sion rules is called a reactive control strategy. 

One of the key features of SAMUEL is that, unlike many 
previous genetic learning systems, the knowledge 
representation consists of symbolic condition-action 
rules, rather than low-level binary pattern matching 
primitives.2 The use of a symbolic language offers 
several advantages. First, it is easier to transfer the 
knowledge learned to human operators. Second, it 
makes it easier to combine genetic algorithms with ana- 
lytic learning methods that explain the success of the 
empirically derived rules [5]. Finally, it makes it easier 

2 Booker [2] shows how more expressive encodings could be 
implemented in a classifier system, but experimental results are not yet 
available. 

to incorporate existing knowledge. A recent study [16] 
addressed this final point by comparing two mechanisms 
for initializing the knowledge structures in SAMUEL. 
The results show that genetic algorithms can be used to 
improve partially correct strategies, as well as to learn 
strategies given no initial knowledge. 

The genetic algorithm in SAMUEL is generational and 
includes the standard genetic operators, SELECTION, 
CROSSOVER, and MUTATION. SAMUEL uses a propor- 
tional selection algorithm and Baker's SUS sampling 
algorithm. CROSSOVER consists of exchanging rules 
between two selected parents. (CROSSOVER occurs on 
rule boundaries only.) MUTATION consists of making a 
random change to a value in a rule. For example, MUTA- 
TION might change the condition 

(time   is   [5 10] 

to 
(time   is    [1   . .   10] ). 

A restricted form of mutation, called CREEP, makes a 
minimal change to a value in a rule. For example, CREEP 
might change the condition 

(time   is    [5   . .   10]) 
to 

(time   is    [6   . .   10]) 

but not to 

(time   is    [7    . .   10]). 

For further details on the operation of SAMUEL, see [9] 
and [10]. 

3   LAMARCKIAN ASPECTS OF SAMUEL 

This section describes some of the more recently 
developed features of SAMUEL, especially those which 
modify the internal knowledge structures of a strategy as 
a direct result of the strategy's experience with the task 
domain. These changes are subsequently passed along to 
the strategy's offspring, reflecting an evolutionary theory 
most often connected with the work of Jean Baptiste 
Lamarck [6]. Lamarck developed a theory that stressed 
the inheritance of acquired characteristics, in particular 
acquired characteristics that are well adapted to the sur- 
rounding environment. Of course, Lamarck's theory was 
superseded by Darwin's emphasis on two-stage adapta- 
tion: undirected variation followed by selection. 
Research has generally failed to substantiate any 
Lamarckian mechanisms in biological systems. For- 
tunately, in artificial systems, we can easily provide that 
which nature cannot.3 The primary Lamarckian feature 
SAMUEL is the association of strengths with individual 
rules, and the use of this information for conflict resolu- 
tion. In addition, many of the rule modification operators 
are Lamarckian in that they are triggered either directly 
by a strategy's interaction with the environment or 
indirectly by the strength of the rules within a strategy. 

It might be mentioned that human cultural evolution is highly 

evolution [6]. 
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The next two sections describe these mechanisms in 
detail. 

3.1 CREDIT ASSIGNMENT AND CONFLICT 
RESOLUTION 

Each rule in SAMUEL has an associated strength that 
estimates the rule's utility for the learning task [7].4 

When a rule is inherited by a newly formed strategy, the 
rule's strength is passed along as well. The primary way 
that rule strength is used in SAMUEL is in conflict resolu- 
tion, which runs as follows: 

1. Find the match set, consisting of all rules that most 
nearly match the current sensor readings. 

2. For each possible action, define the action's bid as the 
maximum strength of any rule in the match set that 
specifies that action. 

3. Raise each (non-null) bid to a power specified by a 
parameter called the bid bias. 

4. Select an action by sampling from the probability dis- 
tribution defined by the modified bids. 

The bid bias serves as kind of a Lamarckian control 
knob.5 For example, if the bid bias = 0, all non-null bids 
are considered equal, and the impact of the inherited 
strength information on conflict resolution is nullified. 
Any non-zero value for the bid bias results in a Lamarck- 
ian system, with a varying degree of greediness. For 
example, if the bid bias = 1, we get a roulette wheel 
selection based on the maximum strength associated with 
each action.6 If the bid bias > 1, we get a bias toward the 
higher bids. (Any value of bid bias > 10 is treated as 
infinite - all bids less than the maximum bid are 
deleted.) Initial experience indicates that the best perfor- 
mance is obtained with the maximum value for the bid 
bias. This is the default value used in the experiments 
described below. 

3.2 LEARNING OPERATORS 

SAMUEL has one binary recombination operator, CROSS- 
OVER. CROSSOVER exchanges rules between two stra- 
tegies.7 In its default mode, CROSSOVER first clusters 
rules so that rules that fire in sequence within a high- 
payoff environment tend to be assigned to the same 
offspring.   The idea is to promote the inheritance of 

4 A rule's strength increases as a function of the mean of the 
expected payoff and decreases with the variance of the expected payoff, 
so that high strength indicates both high utility and high confidence in 
the rule [8]. 

5 The bid bias was inspired by a similar mechanism in Riolo's 
classifier system CFS-C [14], and is similar in effect to the notion of 
using bidding noise based on a classifier's variance [4]. 

6 In all previously reported results with SAMUEL, the bid bias was 
set to 1. 

7 We prefer to rely on explicit mutation operators, rather than 
overload CROSSOVER with the additional task of introducing new rules 
by crossing with rule boundaries. 

behavior associated with high payoff. This form of 
CROSSOVER is Lamarckian since the clustering depends 
directly on the strategy's past experience with the 
environment. 

SAMUEL currently includes six unary operators that 
modify the rules within a single strategy: MUTATION, 
CREEP, SPECIALIZE, GENERALIZE, MERGE, and DELETE. 
Unlike previous versions of the system, SAMUEL has 
now adopted the policy, common in classifier systems 
[12], that all of these operators (except DELETE, of 
course) are creative, i.e., any modifications are made on 
a new copy of the original rule. Once created, a rule sur- 
vives intact unless it is explicitly deleted or lost when its 
strategy is not selected for reproduction. We have found 
that this policy allows a much more aggressive applica- 
tion of rule modification operators with little damage if 
the changes are maladaptive. 

A little more detail on the rule language is necessary 
before we discuss the new rule creation operators. Each 
sensor and control variable has an attribute type declared 
by the user. There are four type of attributes: linear, 
cyclic, structured, pattern. Linear and cyclic attributes 
take on values from a linearly or cyclicly ordered 
numeric range, respectively. For example, the sensor 
time might be a linear attribute with values between 0 
and 20. A condition for this attribute might be 

(time   is    [5 10] 

which would be matched if 5 < time < 10. The cyclic 
attribute direction might take on value between 0 and 
360, and a condition for this attribute might be 

(direction   is   [270 90] 

which would be satisfied if (270 < direction < 360 or 
0 < direction < 90). A pattern attribute is associated with 
a fixed-length string over the alphabet { 0, 1, # }, like 
classifiers in classifier systems [12]. For example, the 
pattern attribute visual-field might be defined as a six-bit 
string, and a condition for this attribute might be 

(visual-field   is   0####1) 

which would be matched if the first bit of visual-field is 
0 and the last bit is 1. A structured attribute can assume 
values from a hierarchy of symbolic values specified by 
the user. For example, an attribute called distance might 
be defined as shown in Figure 1. Conditions for struc- 
tured sensors specify a list of values, and the condition 
matches if the sensor's current value occurs in a subtree 
labeled by one of the values in the list. A condition for 
the distance sensor might be 

(distance is [close, 400]) 

This would match if the sensor distance had the value 
close, medium-close, very-close,  100, 200, 300, or 400. 

The user also specifies an ordering for the structured 
hierarchy that indicates the order relationship among the 
nodes at each level of the hierarchy. The order may be 
linear, cyclic, or none. For example, the distance attri- 
bute above has a linear order among the leaves, as well 
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close far 
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Figure 1: A Structured Attribute 

as among the nodes at each higher level. On the other 
hand, a hierarchy having to do with an object's color 
may have no inherent order among the nodes at a given 
level of generality. An example of a hierarchy with 
cyclic order would be one based on compass direction, 
with leaf values such as due-north, north-east, due-east, 
north-west. The structured type allows the user to bias 
the learning operators to reflect the semantics of the sen- 
sor. We will now discuss the new rule creation opera- 
tors, emphasizing their action on the structured type. 

SPECIALIZE 

The SPECIALIZE operator can be applied when a general 
rule fires in a high payoff episode. (The generality thres- 
hold and the payoff threshold for the operator are run- 
time parameters). The operator creates a new rule whose 
left-hand-side more closely matches the current sensor 
values and whose right-hand-side more closely matches 
the current action value. For numeric conditions (i.e., 
linear or cyclic), the operator creates a new condition 
with roughly half the generality of the previous condition 
by moving each endpoint half way toward the sensor 
reading. For example, if the original condition is 

(speed   is    [100    . .   1500]) 

and the sensor reading is 

speed   =   500 

then the new condition would be 

(speed   is    [300 1000] 

For structured conditions, SPECIALIZE replaces each value 
in the disjunct by each of its children that covers the 
current sensor reading. For example, if the original con- 
dition is 

(distance   is    [close,    far] ) 

and the sensor reading is 

distance   =   300 

then the new condition would be 

(distance   is    [medium-close,    medium-far] ) 

If the sensor reading is 

distance   =   400 

then the new condition would be 

(distance   is    [medium-far]) 

since there is no specialization of close that covers the 
sensor reading. 

GENERALIZE 

The GENERALIZE operator can be applied when a rule 
fires due to a partial match, during a high payoff episode. 
(The payoff threshold for the operator is a run-time 
parameter). A partial match occurs when there is no rule 
that completely matches all the current sensor readings. 
The operator creates a new rule whose left-hand-side is 
generalized enough to match the current sensor values. 
For numeric conditions, the operator creates a new con- 
dition with one of the end points set to the sensor read- 
ing. For example, if the original condition is 

(speed   is    [700    ..   1500]) 

and the sensor reading is 

speed   =   500 

then the new condition would be 

(speed   is   [500   ..   1500]) 

For structured conditions, GENERALIZE adds the current 
sensor value to the disjunct and generalizes up the hierar- 
chy if all the children of a given node are present in the 
disjunct. For example, if the original condition is 

(distance   is    [very-close,    very-far]) 

and the sensor reading is 

distance   =   300 

then the new condition would be 

(distance   is    [close,   very-far]) 

MERGE 

The MERGE operator creates a new rule from two existing 
high-strength rules that have identical right-hand-sides. 
The new rule will match any sensor value matched by 
either of the original rules. The right-hand-side of the 
new rule is the same as both of the original rules. For 
example, the result of MERGE of two rules: 

if   ((time is [1 .. 5]) 
(distance is [very-close])) 

then ((turn is [right])) 

and 



if   ((time is [3 .. 8]) 
(distance is [medium-close, medium-far])) 

then ((turn is [right])) 

would be 

if   ((time is [1 .. 8]) 
(distance is [close, medium-far])) 

then ((turn is [right])) 

The MERGE operator, in combination with the DELETE 
operator below, helps to eliminate overspecialized rules 
from the strategy. 

DELETE 

The DELETE operator is the only mechanism for remov- 
ing rules from a strategy. A rule may be deleted if it 
meets one or more of the following criteria: (1) the rule 
has low activity level (hasn't fired recently); (2) the rule 
has low strength; or (3) the rule is subsumed by another 
rule with higher strength. All of these criteria are con- 
trolled by run-time parameters. 

The operators SPECIALIZE and GENERALIZE are clearly 
Lamarckian in the sense that they are triggered only by 
successful experiences and they change a strategy to 
more closely reflect this experience. MERGE and DELETE 
are indirectly Lamarckian in the sense that they are sen- 
sitive to the strength or activity level of the rules, and 
these statistics directly reflect the rule's past experience 
with the environment. It should be noted, however, that 
with the proper selection of run-time parameters, the 
degree of Lamarckism in all these operators can be 
reduced or eliminated. Future studies will explored the 
effects of Lamarckism in SAMUEL in more depth. 

4   A TEST SUITE OF COMPETITIVE 
ENVIRONMENTS 

This section describes three rather challenging testing 
environments we have designed for SAMUEL. In each 
environment there is one learning agent and another 
adversary agent. This adversary may behave unpredict- 
ably (within certain bounds). The learning agent is the 
same for all three environments, but the adversaries and 
the performance tasks differ. This arrangement provides 
an interesting test of SAMUEL'S ability to learn various 
tasks with an agent with only general purpose sensors 
and effectors.8 

We first describe the learning agent. The agent has a 
fixed set of sensors, namely: time (since the beginning 
of the episode), last-turn (by the agent), bearing (direc- 
tion to adversary's position), heading (relative direction 
of adversary's motion), speed (of adversary), and range 
(to adversary). Each sensor has a fixed granularity that is 

fairly large.9 That is, the mapping from the true world 
state to observed world state is many-to-one. The sen- 
sors are also noisy, and may report incorrect values. The 
agent has two actions: it can change its own direction 
and speed. (In two cases, the agent only learns to 
directly control its turning rate, and its speed is deter- 
mined by its turning rate.) Finally, the agent's own 
actions are noisy. That is, the agent may select a 90 
degree turn, but in fact, it may turn a little less or a little 
more than it had indicated. Unlike an agent in a typical 
AI planning program, our agent generally cannot accu- 
rately predict the next state on the basis of the current 
observed state and the action it selects. These assump- 
tions, which are intended to capture some of the flavor of 
robotic interactions with the real world, preclude the use 
of traditional AI planning techniques, and argue in favor 
of SAMUEL'S more reactive approach. We now describe 
the three test environments. 

4.1 EVASION 

The first environment is a model of predator-prey situa- 
tion in which the learning agent plays the role of prey.10 

The adversary, or predator, can track the motion of the 
prey and steer toward the prey's anticipated position. In 
this environment, the agent learns only its turning rate; 
its speed is determined by the turning rate. The process 
is divided into episodes that begin with the predator 
approaching the prey from a randomly chosen direction. 
The predator initially travels at a far greater speed but is 
less maneuverable than the prey (i.e., the predator has a 
greater turning radius than the prey) and gradually loses 
energy (i.e., speed) as it maneuvers. The episode ends 
when either the predator captures the prey or the 
predator's energy drops below a threshold and it gives 
up. This requires between 2 and 20 decision steps, 
depending on how many turns the predator performs 
while tracking the prey. At the end of each episode, the 
critic provides full payoff if the agent evades the adver- 
sary, and partial payoff otherwise, proportional to the 
amount of time before the agent's capture. 

4.2 TRACKING 

The second environment is a slightly different predator- 
prey model in which the learning agent plays the preda- 
tor. In this model, the goal is to stalk the prey at a dis- 
tance. The adversary (the prey) follows a random course 
and speed. The tracker must learn to control both its 
speed and its direction. It is assumed that the tracker has 
sensors that operate at a greater distance than the prey's 
sensors. The object is to keep the prey within range of 

8 These environments can be made available to other researchers 
who wish to experiment with classifier systems or other learning 
architectures. We would be happy to participate in comparative 
studies. 

9 In the experiments described here, all sensors are structured 
attributes. 

10 This environment differs from the EM problem in previous 
papers [8, 9, 13, 16]. In this paper, we introduce noise into both the 
agent's sensors and actions, and we vary both the initial state and the 
maneuverability characteristics of the adversary. As a result, the task 
is more realistic and more challenging. 



the tracker's sensors, without being detected by the prey. 
If the tracker enters the range of the prey's sensors, it will 
be detected and captured with a probability that depends 
on the tracker's distance and speed. At the end of each 
episode, the critic provides full payoff if the tracker 
keeps within a certain average range of the prey, propor- 
tionately less payoff if the average range exceeds the 
threshold, and 0 payoff if the tracker is captured by the 
prey. 

4.3     DOGFIGHT 

The final environment pits the learning agent against a 
rule-based adversary with identical sensor and action 
capabilities. Like the learner in the Evasion environ- 
ment, each agent controls its own turning rate, but its 
speed is a deterministic function of its turning rate. Each 
agent has a weapon that allows it to destroy the opponent 
if the agent is heading toward the opponent and is within 
the weapon's range. The object, therefore, is both to 
evade the opponent's fire while getting in position to 
make an attack. The learner receives full payoff for an 
episode in which the adversary is destroyed, partial 
payoff for a draw, and 0 payoff if the learner is destroyed. 
The adversary operates according to a fixed set of rules, 
and does not learn during these experiments.11 

5   PERFORMANCE OF SAMUEL ON 
TEST ENVIRONMENTS 

This section presents some initial empirical studies of the 
performance of SAMUEL on the test environments. At 
intervals of five generations, a single strategy is extracted 
by running extended tests on the top 20% of the current 
population. The performance of the extracted strategy is 
shown in the graph. All graphs represent the mean per- 
formance over 10 independent runs of the system, each 
run using a different seed for the random number genera- 
tor. The error bars indicate one standard deviation across 
the runs. All experiments used a common set of parame- 
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In Figure 2 the solid line shows the performance of the 
current version of SAMUEL on the Evasion environment. 
The initial strategy (a random walk) evades the adversary 
about 31% of the time. After 50 generations, the final 
strategy evades the adversary about 82% of the time. 
Due to differences in the rule representation language, a 
direct comparison with the previous version of SAMUEL 
could not be performed. However, a good approximation 
of the previous behavior of SAMUEL can be obtained by 
lowering the bid bias to 1, disabling the GENERALIZE, 
MERGE, and CREEP operators, and restricting SPECIALIZE 

11 We plan to address adaptive adversaries in future experiments. 
12 Population size = 100; crossover rate = 0.6; maximum number of 

rules per strategy = 64; noisy sensors and actions for the learning 
agent, 50 generations per run. After each evaluation, the remaining 
space in each strategy was allocated equally to the rule creation 
operators: MUTATION, CREEP, SPECIALIZE, GENERALIZE, and MERGE. 

Investigation of optimal parameter settings awaits future studies. 
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Figure 2: SAMUEL on Evasion Environment 

to the maximally general rules. The resulting learning 
rate is shown by the dashed line in Figure 2. The 
mechanisms in the current version appear to yield 
significantly better performance, particularly in the early 
stages of learning. Note again that this environment is 
much more challenging than our earlier studies of the 
EM problem [8, 9]. 

Figure 3 shows a typical learning curve for the Tracking 
environment. 
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Figure 3: SAMUEL on Tracking Environment 

This environment is more difficult than the Evasion 
environment in the sense that a random walk has very lit- 
tle chance of producing acceptable behavior. An initial 
plausible strategy, shown in Figure 4, provides an over- 
general but plausible initial starting point. The initial 
strategy successfully tracks the adversary approximately 
22% of the time. After 50 generations, the final strategy 
evades the adversary over 72% of the time. It is not 
currently known whether there exists a completely suc- 
cessful strategy for this environment.   Since the adver- 



if   (and (bearing is [directly-ahead]) 

(range is [high])) 

then (and (turn is [straight]) 
(speed is [medium high])) 

if   (and (bearing is [hard-right, behind-right]) 

(range is [high])) 

then (and (turn is [soft-right]) 
(speed is [medium, high])) 

if   (and (bearing is [directly-behind]) 

(range is [high])) 

then (and (turn is [hard-right]) 
(speed is [medium, high])) 

if   (and (bearing is [hard-left behind-left) 

(range is [high])) 

then (and (turn is [soft-left]) 
(speed is [medium, high])) 

if   (and (range is [close low medium])) 

then (and (turn is [straight]) 
(speed is [low, medium])) 

Figure 4: Initial Strategy for Tracking Environment 

sary follows a random route, it can, and often does, turn 
directly toward the tracker and approach at high speed. 
Since the probability of detection depends in part on the 
tracker's own speed, it can easily be surprised and 
trapped by the adversary. Future studies will shed more 
light on the ultimate level of performance that can be 
obtained in this setting. 
Figure 5 shows a typical learning curve for the Dogfight 
environment. 
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Figure 5: SAMUEL on Dogfight Environment 

The initial strategy (a random walk) defeats the adver- 
sary approximately 40% of the time. After 50 genera- 
tions, the final strategy evades the adversary about 83% 

of the time. Again, it is not currently known whether 
there exists a completely successful strategy for this 
environment. 

SAMUEL appears to perform well in these initial studies 
on the new environments. Although the current version 
represents a significant improvement in learning speed 
over previous versions, some limitations of the system 
remain. There seems to be a window of environmental 
complexity in which SAMUEL performs best. If the 
environment is too simple, other methods such as tradi- 
tional control theory or explanation-based learning may 
be much more efficient ways to develop high perfor- 
mance control rules. If the environment is too complex, 
SAMUEL flounders badly. As an example, the Tracking 
environment requires some initial knowledge in order to 
provide a minimum level of successful experience upon 
which SAMUEL can build better strategies. The user 
should not expect SAMUEL to develop strategies for a 
difficult environment on its own. Nonetheless, we 
believe that SAMUEL can be part of a methodology that 
combines knowledge engineering and machine learning 
in a way that significantly reduces the overall develop- 
ment effort for systems that exhibit expert performance 
in complex environments. 

6   SUMMARY 

This paper has presented a number of recent enhance- 
ments to SAMUEL, emphasizing the enhanced rule 
representation language and learning operators that take 
advantage of this new representation. It is expected that 
the inclusion of these operators will present new oppor- 
tunities to merge to power of genetic algorithms with 
traditional machine learning approaches. 

The performance of the system has been illustrated on 
three competitive environments. We encourage others in 
the GA community to explore learning in environments 
of at least this complexity. Complex, uncertain environ- 
ments offer a promising niche for genetic learning 
approaches, a niche that has not been addressed ade- 
quately by traditional learning methods. 

Finally, SAMUEL represents an integration of the two 
major genetic approaches to machine learning, the 
Michigan approach (i.e., Holland's classifier systems 
[12]) and the Pittsburgh approach (i.e., De Jong and 
Smith's LS-1 approach [17]). It is interesting to note that 
the more Lamarckian features of SAMUEL — using rule 
strengths for conflict resolution, and the triggered rule 
creation operators — were inspired by mechanisms in 
classifier systems. This suggests a fascinating question: 
Is John Holland a Lamarckian? 
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